Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Infect Dis Model ; 8(3): 672-703, 2023 Sep.
Article in English | MEDLINE | ID: covidwho-20231145

ABSTRACT

In the context of SARS-CoV-2 pandemic, mathematical modelling has played a fundamental role for making forecasts, simulating scenarios and evaluating the impact of preventive political, social and pharmaceutical measures. Optimal control theory represents a useful mathematical tool to plan the vaccination campaign aimed at eradicating the pandemic as fast as possible. The aim of this work is to explore the optimal prioritisation order for planning vaccination campaigns able to achieve specific goals, as the reduction of the amount of infected, deceased and hospitalized in a given time frame, among age classes. For this purpose, we introduce an age stratified SIR-like epidemic compartmental model settled in an abstract framework for modelling two-doses vaccination campaigns and conceived with the description of COVID19 disease. Compared to other recent works, our model incorporates all stages of the COVID-19 disease, including death or recovery, without accounting for additional specific compartments that would increase computational complexity and that are not relevant for our purposes. Moreover, we introduce an optimal control framework where the model is the state problem while the vaccine doses administered are the control variables. An extensive campaign of numerical tests, featured in the Italian scenario and calibrated on available data from Dipartimento di Protezione Civile Italiana, proves that the presented framework can be a valuable tool to support the planning of vaccination campaigns. Indeed, in each considered scenario, our optimization framework guarantees noticeable improvements in terms of reducing deceased, infected or hospitalized individuals with respect to the baseline vaccination policy.

2.
Infect Dis Model ; 7(2): 45-63, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1729802

ABSTRACT

Several epidemiological models have been proposed to study the evolution of COVID-19 pandemic. In this paper, we propose an extension of the SUIHTER model, to analyse the COVID-19 spreading in Italy, which accounts for the vaccination campaign and the presence of new variants when they become dominant. In particular, the specific features of the variants (e.g. their increased transmission rate) and vaccines (e.g. their efficacy to prevent transmission, hospitalization and death) are modeled, based on clinical evidence. The new model is validated comparing its near-future forecast capabilities with other epidemiological models and exploring different scenario analyses.

3.
Int J Numer Method Biomed Eng ; 37(9): e3513, 2021 09.
Article in English | MEDLINE | ID: covidwho-1326758

ABSTRACT

An analysis of the COVID-19 epidemic is proposed on the basis of the epiMOX dashboard (publicly accessible at https://www.epimox.polimi.it) that deals with data of the epidemic trends and outbreaks in Italy from late February 2020. Our analysis provides an immediate appreciation of the past epidemic development, together with its current trends by fostering a deeper interpretation of available data through several critical epidemic indicators. In addition, we complement the epiMOX dashboard with a predictive tool based on an epidemiological compartmental model, named SUIHTER, for the forecast on the near future epidemic evolution.


Subject(s)
COVID-19 , Data Visualization , Epidemics , COVID-19/epidemiology , Data Analysis , Humans , Italy/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL